Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation.
نویسندگان
چکیده
Labeling of proteins with fluorescent dyes offers powerful means for monitoring protein interactions in vitro and in live cells. Only a few techniques for noncovalent fluorescence labeling with well-defined localization of the attached dye are currently available. Here, we present an efficient method for site-specific and stable noncovalent fluorescence labeling of histidine-tagged proteins. Different fluorophores were conjugated to a chemical recognition unit bearing three NTA moieties (tris-NTA). In contrast to the transient binding of conventional mono-NTA, the multivalent interaction of tris-NTA conjugated fluorophores with oligohistidine-tagged proteins resulted in complex lifetimes of more than an hour. The high selectivity of tris-NTA toward cumulated histidines enabled selective labeling of proteins in cell lysates and on the surface of live cells. Fluorescence labeling by tris-NTA conjugates was applied for the analysis of a ternary protein complex in solution and on surfaces. Formation of the complex and its stoichiometry was studied by analytical size exclusion chromatography and fluorescence quenching. The individual interactions were dissected on solid supports by using simultaneous mass-sensitive and multicolor fluorescence detection. Using these techniques, formation of a 1:1:1 stoichiometry by independent interactions of the receptor subunits with the ligand was shown. The incorporation of transition metal ions into the labeled proteins upon labeling with tris-NTA fluorophore conjugates provided an additional sensitive spectroscopic reporter for detecting and monitoring protein-protein interactions in real time. A broad application of these fluorescence conjugates for protein interaction analysis can be envisaged.
منابع مشابه
Probing protein conformations by in situ non-covalent fluorescence labeling.
The conformational dynamics of proteins plays a key role in their complex physiological functions. Fluorescence resonance energy transfer (FRET) is a particular powerful tool for studying protein conformational dynamics, but requires efficient site-specific labeling with fluorescent reporter probes. We have employed different tris-NTA/fluorophore conjugates, which bind histidine-tagged proteins...
متن کاملIn vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide
Introduction: The Nef accessory protein is an attractive antigenic candidate in the development of HIV-1 DNA- or protein-based vaccines. The most crucial disadvantage of DNA and protein-based vaccines is their low immunogenicity, which can be improved by cell-penetrating peptides (CPPs) as effective carrier molecules. Methods: In this study, the HIV-1 Nef protein was generated in the Escherichi...
متن کاملExploiting the nitrilotriacetic acid moiety for biolabeling with ultrastable perylene dyes.
Fluorescent probes are essential for the exploration of protein function, detection of molecular interactions, and conformational changes. The nitrilotriacetic acid derivatives of different chromophores were successfully used for site-selective noncovalent fluorescence labeling of histidine-tagged proteins. All of them, however, suffer from the same drawback--loss of the fluorescence upon bindi...
متن کاملFabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups
The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and ...
متن کاملStable and functional immobilization of histidine-tagged proteins via multivalent chelator headgroups on a molecular poly(ethylene glycol) brush.
We present a generic approach for immobilizing oligohistidine-tagged proteins with high stability and homogeneous functionality onto glass-type surfaces. Multivalent chelator heads (MCH) carrying two and three nitrilotriacetic acid (NTA) moieties were coupled with controlled surface concentration to glass surfaces premodified with an ultrathin two-dimensional polymer brush of a bifunctional pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 7 شماره
صفحات -
تاریخ انتشار 2006